

Date Planned ://	Daily Tutorial Sheet – 11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type for JEE Main	Exact Duration :

126. The reaction given below is observed to be first order with rate constant $7.48 \times 10^{-3} \, \mathrm{sec}^{-1}$. Calculate the time required for the total pressure in a system containing A at an initial pressure of 0.1 atm to rise to 0.145 atm and also find the total pressure after 100sec.

 $2A(g) \longrightarrow 4B(g) + C(g)$

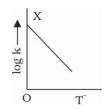
127. In the following first order competing reactions

 $A \xrightarrow{k_1} B$, $C \xrightarrow{k_2} D$.

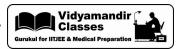
If only 50% of A have been reacted whereas 94% of C has been reacted in the same time interval then find the ratio of $\frac{k_2}{k_1}$.

- **128.** The rate constant for the gas phase reaction $2N_2O_5 \longrightarrow 4NO_2 + O_2$, is $3.0 \times 10^{-5} \, \text{sec}^{-1}$. If the rate of reaction is $2.40 \times 10^{-5} \, \text{mol L}^{-1} \, \text{sec}^{-1}$, what is the concentration of N_2O_5 in (mol L^{-1}) ?
- 129. In the nuclear reaction, ${}^{235}_{92}U \longrightarrow {}^{207}_{82}Pb$, the number of β -particles lost would be
- **130.** Rate of formation of SO_3 in the following reaction

 $2SO_2 + O_2 \rightarrow 2SO_3$


is $100 \mathrm{g} \, \mathrm{min}^{-1}$. Hence, rate of disappearance of $\, \mathrm{O}_2 \, \mathrm{in} \, \, \mathrm{gm} \, \mathrm{min}^{-1} \, \mathrm{is}$

131. For the reaction, $A \rightarrow Products$, $-\frac{d[A]}{dt} = k$ and at different time interval, [A] values are


Time 0 5min 10min 15min [A] 20M 18M 16M 14M

At 20 min, rate of reaction in M min⁻¹ will be

- **132.** A reaction of first order completed 90% in 90min, so, 50% of reaction will complete in _____ min.
- 133. Rate constant of a first order reaction is 0.0693 min^{-1} . If we start with 20 mol L^{-1} concentration in what time, it is reduced to 2.5 mol L^{-1} ?
- 134. Graph between log k and $\frac{1}{T}$ (k is rate constant in s⁻¹ and T is the temperature in kelvin) is a straight line. If OX = 5 and slope of the line = $-\frac{1}{2.303}$ then E_a in calories is:

- **135.** Rate constant of a reaction with a virus is $3.3 \times 10^{-4} \, \text{s}^{-1}$. Time required for the virus to become 75% inactivated in min is ______.
- **136.** For the first order reaction, the time taken to reduce the initial concentration by a factor of 1/4 is 20min. The time required to reduce initial concentration by a factor of 1/16 is _____ min.

- 137. One of the hazards of nuclear explosion is the generation of 90 Sr and its subsequent incorporation in bones. This nuclide has a half life of 28.1 years. Suppose one microgram was absorbed by a new-born child, how much 90 Sr in nanograms will remain in his bones after 20 years? [Given antilog 0.21 = 1.64]
- **138.** The following data were obtained at a certain temperature for the decomposition of ammonia in contact with tungsten:

p (mm Hg) 50 100 200 Relative
$$t_{1/2}$$
 3.64 1.82 0.91

Find the order of the reaction.

139. An organic compound (A) decomposes according to two parallel first order mechanism.

A
$$=$$
 $\frac{k_1}{k_2}B$ $= 1.303$ and $k_2 = 2hr^{-1}$

Calculate the ratio of concentration of C to A, if an experiment is allowed to start with only A for one hour?

140. In the first order decomposition of oxalic acid following data were obtained.

Time (sec)	0	300
$KMnO_4(m1)$	22	17

The half-life period of the reaction is_____ min.